If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2-24t+13=0
a = 9; b = -24; c = +13;
Δ = b2-4ac
Δ = -242-4·9·13
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-6\sqrt{3}}{2*9}=\frac{24-6\sqrt{3}}{18} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+6\sqrt{3}}{2*9}=\frac{24+6\sqrt{3}}{18} $
| 16^(x+4)=32 | | –u4–9=–11 | | x/3-14=24 | | s11-s)=24 | | 63=–3(1–2n | | 15+y=312y | | -3/4n+2=5 | | 234=18m | | 2X-3=-3x+28 | | 2b+10=4b+20=90 | | W+14=-8w= | | 2x+18=16−4(x+7) | | 17–9f+6=140 | | G=4/3(p-94) | | 7x+7=73+x | | 3/4x3/4+2=12x3/4 | | 12x=432x= | | -8=-28+x/5 | | B+-5+5b=24 | | X2+8x-20x=5 | | 20=1-4m+7 | | -2x+28=-54 | | 2/5x-3=-3/5+28 | | 8(x+8)-4x=10x+4 | | 22+5(3x+4)=-7(-6+x) | | –6k–13=83 | | X2+8x=-20 | | (2x+43)+(5x+25)=180 | | 18⋅25^t=261 | | (2+y)(2y+5)=0 | | 2b+10=4b+20 | | -22+5(3x+4=-7(-6+x) |